Journal of Food, Agriculture and Environment




Vol 9, Issue 3&4,2011
Online ISSN: 1459-0263
Print ISSN: 1459-0255


Growth responses of various saltgrass (Distichlis spicata) clones under salt stress conditions


Author(s):

Mohammad Pessarakli *, David M. Kopec, Dennis T. Ray

Recieved Date: 2011-06-12, Accepted Date: 2011-09-30

Abstract:

Continuous desertification of arable lands mandates use of low quality/saline water for irrigation, especially in regions experiencing water shortage. Using low quality/saline water for irrigation imposes more stress on plants which are already under stress in these regions. Thus, a logical solution could be finding a salt tolerant plant species to survive/sustain under such salinity stress conditions. Since the native plants are already growing under such conditions and are adapted to the stress, they are the most suitable candidates for use under these harsh arid saline soil conditions. If the salt stress tolerant species/genotypes of these native plants are identified, there would be a substantial savings in inputs in using them under these stressful conditions. Our studies on various native grasses indicated that saltgrass has a great potential to be used under harsh environmental desert conditions and combat desertification. The objectives of this study were to find the most salinity tolerant types of various saltgrass clones and to recommend them as the potential species for use under arid regions and areas with saline soils or saline water resources for sustainable agriculture and combating desertification. Various saltgrass clones were studied in a greenhouse to evaluate their growth responses under salinity stress conditions. Grasses were grown vegetatively in a hydroponics system under 4 saline treatments [EC = 6 (control), 20, 34, and 48 dSm-1 salinity stress] with 3 replications of each salinity treatment in a randomized complete block (RCB) design experiment. During this period, shoots were clipped bi-weekly for dry matter (DM) weight determination. At the last harvest, roots were also harvested and DM weights determined. Grass quality was weekly evaluated. Although growth responses reduced at the high salinity levels, all the grasses showed a high degree of salinity tolerance. However, there was a wide range of variations observed in salinity tolerance among the clones. The superior salinity tolerant clones were identified which could be recommended for sustainable production under arid regions and combating desertification.

Keywords:

Saltgrass clones, salinity stress tolerance, sustainable agriculture, combating desertification


Journal: Journal of Food, Agriculture and Environment
Year: 2011
Volume: 9
Issue: 3&4
Category: Environment
Pages: 660-664


Full text for Subscribers
Information:

Note to users

The requested document is freely available only to subscribers/registered users with an online subscription to the Journal of Food, Agriculture & Environment. If you have set up a personal subscription to this title please enter your user name and password. All abstracts are available for free.

Article purchasing

If you like to purchase this specific document such as article, review or this journal issue, contact us. Specify the title of the article or review, issue, number, volume and date of the publication. Software and compilation, Science & Technology, all rights reserved. Your use of this website details or service is governed by terms of use. Authors are invited to check from time to time news or information.


Purchase this Article:   20 Purchase PDF Order Reprints for 15

Share this article :