Journal of Food, Agriculture and Environment

Vol 5, Issue 1,2007
Online ISSN: 1459-0263
Print ISSN: 1459-0255

Nonlinear effects of climate change on phosphorus stability in wetlands: Concept and estimation


Hari K. Pant

Recieved Date: 2006-09-22, Accepted Date: 2006-12-20


Effects of climate change on ecosystems like freshwater wetlands cannot be understood without focusing research on getting sense of vulnerability and resiliency at the systemic level, involving tipping points, rapid changes in events and states, because of the interdependency of various components that are subject to nonlinear changes even though they may exert significant inertia to short-term hydro-climatic fluctuations. Depending on resilience, threshold and lag times, hydro-climatic changes brought upon by global climate change may cause nonlinear and/or irreversible changes in phosphorus (P) dynamic and instigate P enrichment in freshwater wetlands. Thus, the studies of the influence of expected global climate change and its direct and indirect effects on bioavailability/stability of organic P in wetlands are in critical need to help manage or increase the resilience of wetland ecosystem against any abrupt or irreversible changes that may adversely affect the ecosystem and its services. Phosphorus dynamic in freshwater wetland system is likely to behave nonlinearly due to expected changes in temperature, sediment/soil, water acidity and redox status because of global climate change in the decades to come, thereby freshwater wetland, a sensitive ecosystem that plays critical role ranging from water quality management to atmospheric CO2 removal, could face irreversible or hysteretic adverse changes. The overall objectives of this paper are to provide consolidated information on identification and estimation of any nonlinear behaviors in the stability/bioavailability of various P forms, which are present in water columns, detritus and soils/sediments, at different levels of stressors in light of changing global climate. Addressing how stable organic P is, and at what threshold level and lag time would organic P behave nonlinearly and release back into the water column, in turn, exacerbate eutrophic conditions, are crucial. Learning the resilience, threshold level and lag times allows us to gauge the strengths and weaknesses of our technological advances and policies that may help us to cope with nonlinear impacts of global climate change on ecosystems such as wetlands. The relationships developed between P mobilization processes, stressors’ levels and lag time can provide invaluable insights for the formulation of management strategies that could increase resilience in freshwater wetlands, which may be subjected to nonlinear ecological responses.


Phosphorus, nonlinear behavior, hydro-climatic change, characterization, enzymatic hydrolysis, mineralization, photolysis

Journal: Journal of Food, Agriculture and Environment
Year: 2007
Volume: 5
Issue: 1
Category: Environment
Pages: 295-301

Full text for Subscribers

Note to users

The requested document is freely available only to subscribers/registered users with an online subscription to the Journal of Food, Agriculture & Environment. If you have set up a personal subscription to this title please enter your user name and password. All abstracts are available for free.

Article purchasing

If you like to purchase this specific document such as article, review or this journal issue, contact us. Specify the title of the article or review, issue, number, volume and date of the publication. Software and compilation, Science & Technology, all rights reserved. Your use of this website details or service is governed by terms of use. Authors are invited to check from time to time news or information.

Purchase this Article:   20 Purchase PDF Order Reprints for 15

Share this article :